

GCE MARKING SCHEME

MATHEMATICS AS/Advanced

JANUARY 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2014 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Unit	Page
C1	1
C2	6
C3	11
M1	17
S1	26
FP1	29

Mathematics C1 January 2014

Solutions and Mark Scheme

Final Version

- 1. (*a*) (i) Gradient of AB = increase in yM1 increase in x Gradient of $AB = -\frac{3}{2}$ (or equivalent) **A**1 Use of gradient $L_1 \times \text{gradient } AB = -1$ (ii) M1A correct method for finding the equation of L_1 using candidate's gradient for L_1 Equation of L_1 : $y-1 = \frac{2}{3}(x-4)$ M1(f.t. candidate's gradient for *AB*) **A**1 (b) An attempt to solve equations of L_1 and L_2 simultaneously M1 (i) x = -2, y = -3(convincing) **A**1 A correct method for finding the coordinates of the mid-point (ii) of ACM1Mid-point of AC has coordinates (2, -2.5)(c.a.o.) **A**1 (iii) A correct method for finding the length of AB(BC)M1 $AB = \sqrt{13}$ **A**1 $BC = \sqrt{52}$ (or equivalent) **A**1 A correct method for finding the area of triangle ABC m1Area of triangle ABC = 13(c.a.o.) **A1**
- 2. $\frac{3\sqrt{3} 2\sqrt{5}}{2\sqrt{3} + \sqrt{5}} = \frac{(3\sqrt{3} 2\sqrt{5})(2\sqrt{3} \sqrt{5})}{(2\sqrt{3} + \sqrt{5})(2\sqrt{3} \sqrt{5})}$ Numerator: $6 \times 3 3 \times \sqrt{3} \times \sqrt{5} 4 \times \sqrt{5} \times \sqrt{3} + 10$ Denominator: 12 5 $\frac{3\sqrt{3} 2\sqrt{5}}{2\sqrt{3} + \sqrt{5}} = 4 \sqrt{15}$ (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $2\sqrt{3} + \sqrt{5}$

An attempt to differentiate, at least one non-zero term correct $dy = 20 \times -1 \times x^{-2} + 4x$ A1

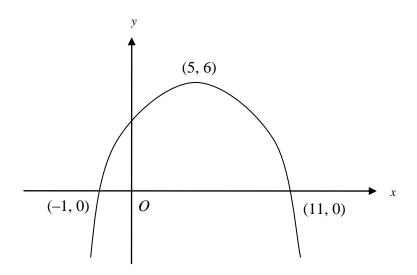
 $\mathrm{d}x$

An attempt to substitute x = 2 in candidate's derived expression for $\frac{dy}{dx}$ m1

Value of $\frac{dy}{dx}$ at P = 3 (c.a.o.) A1

Gradient of normal = $\frac{-1}{\text{candidate's derived value for } \underline{\text{d}y}}$ m1

Equation of normal to C at P: $y-7=-\underline{1}(x-2)$ (or equivalent)


(f.t. candidate's value for $\frac{dy}{dx}$ provided all three method marks are awarded)

A1

- 4. Either p = 0.8 or a sight of $(x + 0.8)^2$ A convincing argument to show that the value 25 is correct $x^2 + 1.6x 24.36 = 0 \Rightarrow (x + 0.8)^2 = 25$ x = 4.2(f.t. candidate's value for p) x = -5.8(f.t. candidate's value for p)

 A1
- 5. (a) $(1 + \sqrt{6})^5 = (1)^5 + 5(1)^4(\sqrt{6}) + 10(1)^3(\sqrt{6})^2 + 10(1)^2(\sqrt{6})^3 + 5(1)(\sqrt{6})^4 + (\sqrt{6})^5$ (five or six terms correct) B2 (If B2 not awarded, award B1 for four correct terms) $(1 + \sqrt{6})^5 = 1 + 5\sqrt{6} + 60 + 60\sqrt{6} + 180 + 36\sqrt{6}$ (six terms correct) B2 (If B2 not awarded, award B1 for four or five correct terms) $(1 + \sqrt{6})^5 = 241 + 101\sqrt{6}$ (f.t. one error) B1
 - (b) ${}^{n}C_{2} \times 3^{k} = 495$ (k = 1, **2**) M1 Either $9n^{2} - 9n - 990 = 0$ or $n^{2} - n - 110 = 0$ or n(n - 1) = 110 A1 n = 11 (c.a.o.) A1
- An expression for $b^2 4ac$, with at least two of a, b, c correct 6. M1 $b^2 - 4ac = 8^2 - 4 \times (2k - 3) \times (2k + 3)$ A1 Putting $b^2 - 4ac < (\leq) 0$ m1 $100 - 16k^2 < 0$ (c.a.o.) (o.e.) A1 Finding critical values k = -5/2, k = 5/2(o.e.) (f.t. candidate's values for m, n) B1 k < -5/2 or 5/2 < k(o.e.) (f.t. only critical values of -a and a) B1 Each of the following errors earns a final B0

the use of non-strict inequalities the use of the word 'and' instead of the word 'or' **7.** (a)

- Concave down curve and *y*-coordinate of maximum = 6 B1
- x-coordinate of maximum = 5 B1
- Both points of intersection with *x*-axis

(b)
$$y = f(-2x)$$
 B2
(**If B2 not awarded**, award B1 for either $y = f(-1/2x)$ or $y = f(2x)$)

8. (a)
$$y + \delta y = 7(x + \delta x)^2 - 6(x + \delta x) - 3$$
 B1
Subtracting y from above to find δy M1
 $\delta y = 14x\delta x + 7(\delta x)^2 - 6\delta x$ A1
Dividing by δx and letting $\delta x \to 0$ M1
 $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 14x - 6$ (c.a.o.) A1

(b)
$$\frac{dy}{dx} = a \times \frac{4}{3} \times x^{1/3} + 24 \times \frac{1}{2} \times x^{-1/2}$$
Attempting to substitute $x = 64$ in candidate's expression for $\frac{dy}{dx}$ and $\frac{dy}{dx}$

putting expression equal to $\frac{11}{2}$ M1

(The M1 is only awarded if at least one B1 has been awarded) $a = \frac{3}{4}$ (c.a.o.) A1

9. (a) Use of
$$f(-3) = -39$$
 M1
 $-27a + 117 + 30 - 24 = -39 \Rightarrow a = 6$ (convincing) A1

(b) Attempting to find
$$f(r) = 0$$
 for some value of r M1 $f(-2) = 0 \Rightarrow x + 2$ is a factor A1 $f(x) = (x + 2)(6x^2 + ax + b)$ with one of a, b correct M1 $f(x) = (x + 2)(6x^2 + x - 12)$ A1 $f(x) = (x + 2)(2x + 3)(3x - 4)$ (f.t. only $6x^2 - x - 12$ in above line) A1 $x = -2, -\frac{3}{2}, \frac{4}{3}$ (f.t. for factors $2x \pm 3, 3x \pm 4$) A1

Special case

Candidates who, after having found x + 2 as one factor, then find just one of the remaining factors by using e.g. the factor theorem, are awarded B1 for the final 4 marks

10. (a)
$$\underline{dy} = -6x^2 + 24x - 18$$

B1

 $\mathrm{d}x$

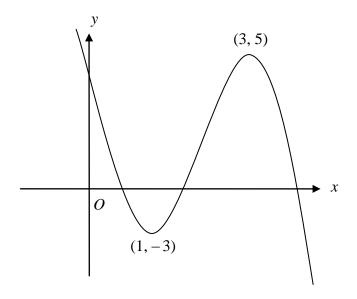
Putting derived $\underline{dy} = 0$

M1

M1

 $\mathrm{d}x$

x = 1, 3 (both correct)


(f.t. candidate's $\frac{dy}{dx}$) A1

Stationary points are (1, -3) and (3, 5) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding **either** (1, -3) is a minimum point

or (3, 5) is a maximum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1

(*b*)

Graph in shape of a negative cubic with two turning points Correct marking of both stationary points

(f.t. candidate's derived maximum and minimum points) A1

(c) Use of both k = -3, k = 5 to find the range of values for k

(f.t. candidate's y-values at stationary points) M1

-3 < k < 5 (f.t. candidate's y-values at stationary points) A1

Mathematics C2 January 2014

Solutions and Mark Scheme

Final Version

```
1.
                                                          2
                                                                                                                                                   2
                                                          2.5
                                                                                                                                                   1.843908891
                                                           3
                                                                                                                                                    1.732050808
                                                          3.5
                                                                                                                                                    1.647508942
                                                                                                                                                    1.58113883
                                                                                                                                                                                                                                           (5 values correct)
                                                                                                                                                                                                                                                                                                                                    B2
                                                           (If B2 not awarded, award B1 for either 3 or 4 values correct)
                              Correct formula with h = 0.5
                                                                                                                                                                                                                                                                                                                                    M1
                              I \approx 0.5 \times \{2 + 1.58113883 + 2(1.843908891 + 1.732050808 + 1.647508942)\}
                              I \approx 14.02807611 \times 0.5 \div 2
                              I \approx 3.507019028
                              I \approx 3.507
                                                                                                                                                                                                                                            (f.t. one slip)
                                                                                                                                                                                                                                                                                                                                   A1
                              Special case for candidates who put h = 0.4
                                                           2
                                                           2.4
                                                                                                                                                    1.870828693
                                                           2.8
                                                                                                                                                    1.772810521
                                                           3.2
                                                                                                                                                    1.695582496
                                                           3.6
                                                                                                                                                    1.632993162
                                                                                                                                                    1.58113883
                                                                                                                                                                                                                                            (all values correct)
                                                                                                                                                                                                                                                                                                                                    B1
                              Correct formula with h = 0.4
                                                                                                                                                                                                                                                                                                                                    M1
                              I \approx 0.4 \times \{2 + 1.58113883 + 2(1.870828693 + 1.772810521 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.88434 + 1.8844 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444 + 1.88444
                                                                                                                                                                                                              1.695582496 + 1.632993162)
                              I \approx 17.52556857 \times 0.4 \div 2
                              I \approx 3.505113715
                              I \approx 3.505
                                                                                                                                                                                                                                            (f.t. one slip)
                                                                                                                                                                                                                                                                                                                                   A1
```

Note: Answer only with no working earns 0 marks

2. (a)
$$8\cos^2\theta - 7(1-\cos^2\theta) = 4\cos\theta - 3$$

(correct use of $\sin^2 \theta = 1 - \cos^2 \theta$) M1

An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$,

with $a \times c =$ candidate's coefficient of $\cos^2 \theta$ and $b \times d =$ candidate's constant m1

$$15\cos^{2}\theta - 4\cos\theta - 4 = 0 \Rightarrow (5\cos\theta + 2)(3\cos\theta - 2) = 0$$

\Rightarrow \cos \theta = \frac{2}{5} \quad (c.a.o.) \quad A1

$$\theta = 48.19^{\circ}, 311.81^{\circ}$$
 B1

$$\theta = 113.58^{\circ}, 246.42^{\circ}$$
 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

 $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks}$ $\cos \theta = +, +, \text{ f.t. for 1 mark}$

(b)
$$X = 114^{\circ}$$
 B1

$$Y - Z = 20^{\circ}$$
 B1

$$114^{\circ} + Y + Z = 180^{\circ}$$
 (f.t. only for an obtuse value for X) M1

$$Y = 43^{\circ}, Z = 23^{\circ}$$
 (f.t. one error) A1

3. (a)
$$a + 2d + a + 7d = 0$$
 B1

$$a + 4d + a + 6d + a + 9d = 22$$
 B1

An attempt to solve the candidate's linear equations simultaneously by eliminating one unknown M1

$$a = -18, d = 4 \text{ (both values)}$$
 (c.a.o.) A1

(b)
$$S_n = \underline{n}[2 \times 9 + (n-1) \times 2]$$
 B1

$$S_{2n} = \underline{2n}[2 \times 9 + (2n-1) \times 2]$$
 B1

$$\frac{2n[2\times 9 + (2n-1)\times 2] = k \times \underline{n}[2\times 9 + (n-1)\times 2]}{2} \qquad (k = 3, \frac{1}{3})$$

(f.t. candidate's quadratic expressions for S_{2n} , S_n provided at least one of the first two B marks is awarded)

M1

An attempt to solve this equation including dividing both sides by n to reach a linear equation in n.

$$n = 8$$
 (c.a.o.) A1

4. (a)
$$S_n = a + ar + ... + ar^{n-1}$$
 (at least 3 terms, one at each end) B1

 $rS_n = ar + ... + ar^{n-1} + ar^n$
 $S_n - rS_n = a - ar^n$ (multiply first line by r and subtract) M1

 $(1-r)S_n = a(1-r^n)$ (convincing) A1

(b) (i) $ar^3 = -108$ and $ar^6 = 4$ B1

 $r^3 = \frac{4}{-108}$ (o.e.) M1

 $r = -\frac{1}{3}$ (c.a.o.) A1

(ii) $a \times (-\frac{1}{3})^3 = -108 \Rightarrow a = 2916$ (f.t. candidate's derived value for r) B1

 $S_{\infty} = \frac{2916}{1 - (-\frac{1}{3})}$ (use of formula for sum to infinity)

(f.t. candidate's derived values for r and a) M1

 $S_{\infty} = 2187$ (c.a.o.) A1

5. (a) (i) Either: $5^2 = 3^2 + x^2 - 2 \times 3 \times x \times \cos ADB$ (o.e.)

Or: $6^2 = 1^2 + x^2 - 2 \times 1 \times x \times \cos ADC$ (o.e.)

(at least one correct use of cos rule) M1

 $\cos ADB = x^2 - 16$ (convincing) A1

5. (a) (i) Either:
$$5^2 = 3^2 + x^2 - 2 \times 3 \times x \times \cos ADB$$
 (o.e.)

Or: $6^2 = 1^2 + x^2 - 2 \times 1 \times x \times \cos ADC$ (o.e.)

(at least one correct use of cos rule) M1

$$\cos ADB = \frac{x^2 - 16}{6x}$$
 (convincing) A1

$$\cos ADC = \frac{x^2 - 35}{2x}$$
 A1

(ii) $\frac{x^2 - 16}{6x} + \frac{x^2 - 35}{2x} = 0$ (o.e.)

(f.t. candidate's derived expression for $\cos ADC$) M1

$$4x^2 = 121$$
 (f.t. candidate's derived expression for $\cos ADC$) The expression for $\cos ADC$ providing it is of similar form) A1

$$x = 5.5$$
 (convincing) (c.a.o.) A1

(b)
$$ADB = 64.42^{\circ}$$
 B1
Area of triangle $ADB = \underbrace{5.5 \times 3 \times \sin 64.42^{\circ}}_{2}$ (f.t. candidate's derived value for angle ADB) M1

(c.a.o.)

A1

Area of triangle $ADB = 7.44 \text{ cm}^2$

6. (a)
$$5 \times \frac{x^{-2}}{-2} - 2 \times \frac{x^{4/3}}{4/3} - 4x + c$$
 B1, B1, B1 (-1 if no constant term present)

(b) Area =
$$\int_{2}^{6} \left[3x^{2} - \underline{1}x^{3} \right] dx$$
 (use of integration) M1

$$\frac{3x^3}{3} - \frac{1}{4 \times 4}$$
 (correct integration) B1

Area =
$$(216 - 81) - (8 - 1)$$

(correct method for substituting limits) m1

Area =
$$128$$
 (c.a.o.) A1

7. (a) Let
$$p = \log_a x$$

Then $x = a^p$ (relationship between log and power) B1
 $x^n = a^{pn}$ (the laws of indices) B1
 $\therefore \log_a x^n = pn$ (relationship between log and power)
 $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1

$$(5-4x)\log_{10} 7 = \log_{10} 11$$

(taking logs on both sides and using the power law) M1

$$x = \frac{5\log_{10}7 - \log_{10}11}{4\log_{10}7}$$
 A1

$$x = 0.942$$
 (f.t. one slip, see below) A1

Or:

$$5-4x = \log_7 11$$
 (rewriting as a log equation) M1

$$x = \underbrace{5 - \log_7 11}_{4}$$
 A1

$$x = 0.942$$
 (f.t. one slip, see below) A1

Note: an answer of x = -0.942 from $x = \frac{\log_{10} 11 - 5 \log_{10} 7}{4 \log_{10} 7}$

earns M1 A0 A1

an answer of
$$x = 1.558$$
 from $x = \frac{\log_{10} 11 + 5 \log_{10} 7}{4 \log_{10} 7}$

earns M1 A0 A1

Note: Answer only with no working shown earns 0 marks

(c)
$$\log_8 x = -\frac{1}{3} \Rightarrow x = 8^{-1/3}$$
 (rewriting log equation as power equation) M1

$$x = 8^{-1/3} \Rightarrow x = \frac{1}{2}$$
 A1

8. (a) (i) A(2,-4) B1 (ii) Gradient $AP = \underbrace{\text{inc in } y}_{\text{inc in } x}$ M1 Gradient $AP = \underbrace{(-7) - (-4)}_{6-2} = -\underbrace{3}_{4}$ (f.t. candidate's coordinates for A) A1

Use of $m_{\text{tan}} \times m_{\text{rad}} = -1$ M1

Equation of tangent is:

 $y - (-7) = \underline{4}(x - 6)$ (f.t. candidate's gradient for AP) A1

- (b) An attempt to substitute (x + 3) for y in the equation of the circle and form quadratic in x M1 $x^2 + (x + 3)^2 4x + 8(x + 3) 5 = 0 \Rightarrow 2x^2 + 10x + 28 = 0$ A1 An attempt to calculate value of discriminant m1 Discriminant = $100 224 < 0 \Rightarrow$ no points of intersection (f.t. one slip) A1
- - Perimeter of ACDB = 21.4 cm (c.a.o.) A1

B1 B1

(b) The sequence repeats itself every third term $t_{50} = \frac{3}{4}$ B1

10.

(a) $t_2 = \frac{3}{4}$ $t_3 = -\frac{1}{3}$, $t_4 = 4$

Mathematics C3 January 2014

Solutions and Mark Scheme

Final Version

1. (a) 0 0
$$\pi/12$$
 0.071796769 $\pi/6$ 0.333333333 $\pi/4$ 1 $\pi/3$ 3 (5 values correct) B2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with $h = \pi/12$ M1 $I \approx \frac{\pi/12}{3} \times \{0 + 3 + 4(0.071796769 + 1) + 2(0.333333333)\}$ $I \approx 7.953853742 \times (\pi/12) \div 3$ $I \approx 0.69410468$ $I \approx 0.6941$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{\pi/3} \sec^{2}x \, dx = \int_{0}^{\pi/3} 1 \, dx + \int_{0}^{\pi/3} \tan^{2}x \, dx$$

$$\int_{0}^{\pi/3} \sec^{2}x \, dx = 1.7413$$
(f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

- Choice of x satisfying $75^{\circ} \le x < 90^{\circ}$ and one correct evaluation 2. (a) **B**1 Both evaluations correct **B**1
 - $15(1+\cot^2\theta)+2\cot\theta=23$ (*b*) (correct use of $\csc^2 \theta = 1 + \cot^2 \theta$) M1

An attempt to collect terms, form and solve quadratic equation in cot θ , either by using the quadratic formula or by getting the expression into the form $(a \cot \theta + b)(c \cot \theta + d)$,

with $a \times c$ = candidate's coefficient of $\cot^2 \theta$ and $b \times d$ = candidate's constant m1

$$15 \cot^{2}\theta + 2 \cot \theta - 8 = 0 \Rightarrow (5 \cot \theta + 4)(3 \cot \theta - 2) = 0$$

$$\Rightarrow \cot \theta = \frac{2}{3}, \cot \theta = -\frac{4}{5}$$

$$\Rightarrow \tan \theta = \frac{3}{2}, \tan \theta = -\frac{5}{4}$$
(c.a.o.) A1

 $\theta = 56.31^{\circ}, 236.31^{\circ}$ B1

$$\theta = 128.66^{\circ}, 308.66^{\circ}$$
 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

> $\tan \theta = +, -, \text{ f.t. for 3 marks}, \tan \theta = -, -, \text{ f.t. for 2 marks}$ $\tan \theta = +, +, \text{ f.t. for } 1 \text{ mark}$

3.
$$\underline{d}(x^3) = 3x^2 \qquad \underline{d}(3) = 0$$

$$\underline{d}(-2x^2y) = -2x^2\underline{d}y - 4xy$$

$$\underline{d}(x) \qquad \underline{d}(x) \qquad \underline{d}$$

$$\underline{\mathbf{d}}(-2x^2y) = -2x^2\underline{\mathbf{d}}y - 4xy$$
B1

$$\underline{\mathbf{d}}(3y^2) = 6y\underline{\mathbf{d}y}$$
 B1

$$\frac{1}{dx}$$
 $\frac{1}{dx}$

$$\frac{dy}{dx} = \frac{-4}{-14} = \frac{2}{7}$$
 (c.a.o.) B1

$$\mathbf{4.} \qquad (a) \qquad \underline{\mathbf{d}x} = 6t^2$$
 B1

(b)
$$\frac{d}{dt} \left[\frac{dy}{dx} \right] = 2 + 12t^{2}$$
Use of
$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \frac{dx}{dt}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{2 + 12t^{2}}{6t^{2}}$$
(c.a.o.) A1

$$\frac{dx^2}{dx^2} = 6t^2$$

$$\frac{d^2y}{dx^2} = 2 \Rightarrow 2 + 12t^2 = 12t^2 (\Rightarrow 2 = 0) \Rightarrow \text{ no such } t \text{ exists}$$
E1

(c) Use of
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
 M1

$$\frac{dy}{dt} = 12t^3 + 24t^5$$
 (f.t. candidate's expression for $\frac{dx}{dt}$) A1

Use of a valid method of integration to find y m1

$$y = 3t^4 + 4t^6 (+ c)$$
 (f.t. one error in candidate's $\frac{dy}{dt}$) A1

$$y = 3t^4 + 4t^6 + 3$$
 (c.a.o.) A1

5.
$$x_0 = 1$$

 $x_1 = 0.612372435$ (x_1 correct, at least 5 places after the point) B1
 $x_2 = 0.62777008$
 $x_3 = 0.627136142$
 $x_4 = 0.627162204 = 0.62716$ (x_4 correct to 5 decimal places) B1
Let $h(x) = x^3 + 7x^2 - 3$
An attempt to check values or signs of $h(x)$ at $x = 0.627155$, $x = 0.627165$ M1
 $h(0.627155) = -6.15 \times 10^{-5} < 0$, $h(0.627165) = 3.81 \times 10^{-5} > 0$ A1

A1

Change of sign $\Rightarrow \alpha = 0.62716$ correct to five decimal places

6. (a)
$$\frac{dy}{dx} = 10 \times (5x^3 - x)^9 \times f(x)$$
 $(f(x) \neq 1)$ M1
 $\frac{dy}{dx} = 10(5x^3 - x)^9 (15x^2 - 1)$ A1

(b) Either
$$\underline{dy} = \frac{f(x)}{\sqrt{1 - (x^3)^2}}$$
 (including $f(x) = 1$) or $\underline{dy} = \frac{3x^2}{\sqrt{1 - x^5}}$ M1
$$\underline{dy} = \frac{3x^2}{\sqrt{1 - x^6}}$$
 A1

(c)
$$\frac{dy}{dx} = x^4 \times f(x) + \ln(2x) \times g(x)$$

$$\frac{dy}{dx} = x^4 \times f(x) + \ln(2x) \times g(x) \quad \text{(either } f(x) = 2 \times \frac{1}{2x} \text{ or } g(x) = 4x^3 \text{)} \quad \text{A1}$$

$$\frac{dy}{dx} = x^3 + 4x^3 \ln(2x) \quad \text{(all correct)} \quad \text{A1}$$

(d)
$$\frac{dy}{dx} = \frac{(2x+3)^6 \times k \times e^{4x} - e^{4x} \times 6 \times (2x+3)^5 \times m}{[(2x+3)^6]^2}$$
with either $k = 4$, $m = 2$ or $k = 4$, $m = 1$ or $k = 1$, $m = 2$ M1
$$\frac{dy}{dx} = \frac{(2x+3)^6 \times 4 \times e^{4x} - e^{4x} \times 6 \times (2x+3)^5 \times 2}{[(2x+3)^6]^2}$$

$$\frac{dy}{dx} = \frac{8xe^{4x}}{(2x+3)^7}$$
(correct numerator) A1
$$\frac{dx}{dx} = \frac{8xe^{4x}}{(2x+3)^7}$$
(correct denominator) A1

7. (a) (i)
$$\int_{0}^{6^{5x/6}} dx = k \times e^{5x/6} + c$$
 (k = 1, ⁵/₆, ⁶/₅) M1
$$\int_{0}^{6^{5x/6}} dx = {}^{6}/_{5} \times e^{5x/6} + c$$
 A1

(ii)
$$\int (8x+1)^{1/3} dx = \underbrace{k \times (8x+1)^{4/3}}_{4/3} + c \qquad (k=1, 8, \frac{1}{8}) \qquad M1$$
$$\int (8x+1)^{1/3} dx = \frac{3}{32} \times (8x+1)^{4/3} + c \qquad A1$$

(iii)
$$\int \sin(1 - x/3) \, dx = k \times \cos(1 - x/3) + c$$
$$(k = -1, 3, -3, \frac{1}{3}) \quad M1$$
$$\int \sin(1 - x/3) \, dx = 3 \times \cos(1 - x/3) + c \quad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \frac{1}{4x - 1} dx = k \times \ln(4x - 1) \qquad (k = 1, 4, \frac{1}{4}) \qquad M1$$

$$\int \frac{1}{4x - 1} dx = \frac{1}{4} \times \ln(4x - 1) \qquad A1$$

$$k \times [\ln(4a - 1) - \ln 7] = 0.284 \qquad (k = 1, 4, \frac{1}{4}) \qquad m1$$

$$\frac{4a-1}{7} = e^{1.136}$$
 (o.e.) (c.a.o.) A1
 $a = 5.7$ (f.t. $a = 2.6$ for $k = 1$ and $a = 2.1$ for $k = 4$) A1

8. Trying to solve
$$3x + 4 = 2(x - 3)$$
 M1
Trying to solve $3x + 4 = -2(x - 3)$ M1
 $x = -10, x = 0.4$ (c.a.o.)

Alternative mark scheme

$$(3x + 4)^2 = [2(x - 3)]^2$$
 (squaring both sides) M1

$$5x^2 + 48x - 20 = 0$$
 (at least two coefficients correct) A1

$$x = -10, x = 0.4$$
 (c.a.o.) A1

9. (a)
$$y-1=\frac{2}{\sqrt{3x-5}}$$
 B1

M1

An attempt to isolate
$$3x - 5$$
 by crossmultiplying and squaring
$$x = \frac{1}{3} \begin{bmatrix} 5 + \frac{4}{(y-1)^2} \end{bmatrix}$$

$$f^{-1}(x) = \frac{1}{3} \begin{bmatrix} 5 + \frac{4}{(x-1)^2} \end{bmatrix}$$
(c.a.o.)
A1

(f.t. one slip in candidate's expression for x) **A**1

(b)
$$D(f^{-1}) = (1, 1.5]$$
 B1 B1

10. (a)
$$g'(x) = \frac{4}{(x+1)^2}$$
 B1

 $g'(x) > 0 \Rightarrow g$ is an increasing function **B**1

(b)
$$R(g) = (0, 4)$$
 B1 B1

(c)
$$D(fg) = (-\infty, -2)$$
 B1
 $R(fg) = (\sqrt{5}, \sqrt{21})$ (f.t. candidate's $R(g)$) B1

(d) (i)
$$fg(x) = \left(\left(\frac{-4}{(x+1)} \right)^2 + 5 \right)^{1/2}$$
 B1

Putting expression for fg(x) equal to 3 and squaring both sides (ii)

> M1 $\left(\frac{-4}{x+1}\right)^2 = 4$ (o.e.) (c.a.o.) **A**1

$$x = -3, 1$$
 (two values, f.t. one slip) A1

Rejecting x = 1 and thus x = -3(c.a.o.) **A**1

Mathematics M1 January 2014

Solutions and Mark Scheme

Final Version

Q	Solution	Mark	Notes
1(a)	18 3 48 60 ts	B1	(0, 18) to (48, 18)
	18 – 3	B1	Or (48, 18) to (60, 3) graph all correct, with units, labels.
1(b)	magnitude of deceleration = $\frac{18-3}{12}$ $= 1.25 \text{ (ms}^{-2}\text{)}$	M1 A1	A0 if negative
	Distance = area under graph Distance = $48 \times 18 + 0.5(18 + 3) \times 12$ Distance = 990 (m)	M1 B1 A1	attempt at total area. one correct area seen cao

Q	Solution	Mark	Notes
	Use of $v = u+at$, $v=0$, $u=(\pm)7$, $a=(\pm)9.8$ 0 = 7 - 9.8t $t = \frac{7}{9 \cdot 8} = \frac{5}{7}(s)$	M1 A1	oe correct equ solvable for <i>t</i> A1
2(b)	Use of $s = ut + 0.5at^2$, $u = (\pm)7$, $a = (\pm)9.8$, $t = 4$ $s = 7 \times 4 + 0.5(-9.8) \times 4^2$ $s = 28 - 4.9 \times 16$ s = -50.4 Height of cliff is 50.4 (m)	M1 A1	if staged method, one correct distance cao, allow –ve

Q	Solution	Mark	Notes
	N2L applied to man $R - 65g = 65a$ $R = 65 \times 1.2 + 65 \times 9.8$ $R = 715 \text{ (N)}$	A1	dim correct and R and 65g opposing.

Q	Solution	Mark	Notes
4(a)(i)			
	R G		
	$R = 60g\cos\alpha$ $F = \mu R$ $F = 60 \times 9.8\cos\alpha \times 0.3$	B1	
4(a)(ii)	$F = 159.87 \text{ (N)}$ N2L applied to object $60g\sin\alpha - F = 60a$ $60a = 60 \times 9.8 \sin 25^{\circ} - 159.87$ $a = 1.48 \text{ (ms}^{-2})$	A1	all forces, dim correct.
	If object remains stationary, component Of weight down slope ≤ Friction 60gsinα ≤ μ×60gcosα ∴ least μ = tan 25° = 0.4663 = 0.47 (to 2 d.p.)	M1 A1	si

Solution	Mark	Notes
$Q = 9\sin 60^{\circ}$	M1	equation required
$=9\times\frac{\sqrt{3}}{2}=\underline{7.794}$	A1	cao
	M1	equation required, all forces
$P = 6 - 9 \times 0.5$	A1	correct equation
r – <u>1.3</u>	AI	Cao
	Resolve in Q direction $Q = 9\sin 60^{\circ}$ $= 9 \times \frac{\sqrt{3}}{2} = 7.794$ Resolve in P direction $P + 9\cos 60^{\circ} = 6$ $P = 6 - 9 \times 0.5$ $P = 1.5$	$Q = 9\sin 60^{\circ}$ $= 9 \times \frac{\sqrt{3}}{2} = 7.794$ A1 Resolve in <i>P</i> direction $P + 9\cos 60^{\circ} = 6$ $P = 6 - 9 \times 0.5$ A1

Q	Solution	Mark	Notes
6(a)			
	700N - 8400N - 2100g		
	N2L on whole system	M2	all forces in same dir, dim correct. 8400N and
		(M1	resistance opposing. one force missing but must have comp of wt.
	$8400 - 700 - 2100g\sin\alpha = 2100a$ $8400 - 700 - 5762.4 = 2100a$	A2	and resistance.) -1 each error
	$a = 0.923 \text{ (ms}^{-2}\text{)}$	A1	cao 3 dp required.
6(b)			
	300N 600g		
	N2L applied to trailer	M1	all forces, no extra. Dim correct. Either resist.
	$T - 300 - 600g\sin\alpha = 600a$ $T - 300 - 600x0.8x = 7 - 600x = 346$	A2	or comp wt opposing -1 each error
	$T - 300 - 600 \times 9.8 \times \frac{7}{25} = 600 \times \frac{346}{375}$ $T = 2500 \text{ (N)}$	A1	ft a. answers rounding to 2500

Q	Solution	Mark	Notes
7(a)			
	$A \xrightarrow{1.2} A \xrightarrow{1.2} 1.2 \xrightarrow{1.2} A \xrightarrow{1.2}$		
7(a)(i)	Moments about <i>Y</i>	M1	dim. Correct, all forces, equation, oe
	$Mg \times 1.2 = R_X \times 2.4 + 84g \times 0.4$ $(9.8 \times 1.2)M = 2.4 \times 156.8 + 84 \times 9.8 \times 0.4$ $M = \underline{60}$	B1 A1	any correct moment.
	Resolve vertically $R_X + R_Y = Mg + 84g$ $R_Y = 144 \times 9.8 - 156.8$ $R_Y = \underline{1254.4 (N)}$	A1	all forces
	When plank about to tilt about Y $R_Y = 0$ Resolve vertically $R_X = 60g + 84g$ $R_X = \underline{1411.2 (N)}$		si all forces ft <i>M</i>
	Moments about X $84g \times x = 60g \times 1.2$ $x = \frac{6}{7} = \underline{0.86}$		dim correct ft <i>M</i>
	Distance of the person from $X = 0.86$ (m)		

Q	Solution	Mark	Notes
8(a)(i)			
	$ \begin{array}{c} 3 \\ A \\ 1.8 \text{kg} \end{array} $ $ \begin{array}{c} 0 \\ B \\ 0.2 \text{kg} \end{array} $		
	Conservation of momentum $1.8\times3 + 0.2\times0 = 1.8v + 0.2v$ 2v = 5.4	M1 A1	allow different v's
	$v = 2.7 \text{ (ms}^{-1}\text{)}$	A1	convincing
8(a)(ii)	$e = \underline{0}$	B1	
	N2L applied to combined object $-8 = 2a$ $a = -4 \text{ ms}^{-2}$ $ a = 4 \text{ (ms}^{-2})$	M1 A1	dim correct
	Use of $v = u+at$, $u=2.7$, $a=(\pm)4$, $t=0.5$ $v = 2.7 - 4 \times 0.5$		oe ft <i>a</i> if <0.
	$v = 0.7 \text{ (ms}^{-1})$		ft <i>a</i> if <0.
	Use of $v^2 = u^2 + 2as$, $u = 2.7$, $v = 2$, $a = (\pm)4$ $2^2 = 2.7^2 - 2 \times 4s$ s = 0.41(125 m)		oe ft <i>a</i> if <0. ft <i>a</i> if <0.

Q		Soluti	on		Mark	Notes
9(a)		Area	from AD	from AB		
	ABCD Circle XYZ Lamina	360 21 36 375	10 6 13 x	9 12 7 <i>y</i>	B1 B1 B1 B1	all 4 correct areas
9(a)(i)	Moments abo	out AD			M1	consistent use of signs for areas and moments.
	$360 \times 10 + 360 \times 10 = 10.5(12 \text{ G})$		75 <i>x</i> +21×6		A1 A1	ft table if +XYZ and -circ cao
9(a)(ii)	Moments abo	out <i>AB</i>			M1	consistent use of signs for areas and moments.
	$360 \times 9 + 36 \times y = 8.6(4 \text{ cm})$		y +21×12		A1 A1	ft table if +XYZ and -circ cao
9(b)	D Q_1 A Consider tria Angle $RGQ = A$	ngle <i>RQ</i>		$\frac{Q_2}{C}$		
	.: $RQ = RG$ Let $DQ_1 = x$ 10.512 - x = x = 10.512 - x = x = x = 10.512 - x = x = x = x = x = x = x = x = x = x	9.36	4		M1	
	$DQ_1 = \frac{1.1(52)}{DQ_2}$ $DQ_2 = \frac{10.512}{DQ_2}$ $DQ_2 = \frac{19.8(7)}{DQ_2}$	2 + (18 -	- 8.64)		M1 A1	ft x, y ft x, y

Mathematics S1 January 2014

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1(a)(i)	$P(A \cap B) = P(B)P(A \mid B)$	M1	Award M1 for using formula
	= 0.08	A1	
(ii)	$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$	3.54	
	$P(A) = \frac{P(A)}{P(A)}$	M1	Award M1 for using formula
(b)	= 0.16	A1	FT their $P(A \cap B)$ unless
(b)	Considering any valid expression, eg $P(A \cap B) > 0$,		independence assumed
	$P(A B) > 0, P(B A) > 0, P(A \cup B) < P(A) + P(B),$	B1	FT previous work
	the events are not mutually exclusive		Conclusion must be justified
			and the same of th
2(a)			
	P(1 of each) =		
	$\frac{6}{12} \times \frac{4}{11} \times \frac{2}{10} \times 6 \text{ or } \begin{pmatrix} 6 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \end{pmatrix} \div \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	M1A1	M1A0 if 6 omitted or incorrect
	$12^{11}^{10}^{10}^{10}$		factor used
	_ 12 (0.218)	A1	
	$=\frac{12}{55} \qquad (0.218)$		
(b)	$\mathbf{p}(3 \mathbf{F}(s)) = 6 + 5 + 4 = \mathbf{r}(6) + (12)$	M1	
	$P(3 \text{ Els}) = \frac{6}{12} \times \frac{5}{11} \times \frac{4}{10} \text{ or } \begin{pmatrix} 6 \\ 3 \end{pmatrix} \div \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	IVII	
	1 (0.001)	4.1	
	$=\frac{1}{11}$ (0.091)	A1	
(c)	$P(3,C_{1}, 2) = 4 + 3 + 2 + (4) + (12)$		
(C)	$P(3 \text{ Gala}) = \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \text{ or } \begin{pmatrix} 4 \\ 3 \end{pmatrix} \div \begin{pmatrix} 12 \\ 3 \end{pmatrix}$		
	1 (0.018) -:	B 1	
	$=\frac{1}{55}$ (0.018) si		
	P(3 the same) = 1 + 1 = 6 (0.100)	M1A1	
	P(3 the same) = $\frac{1}{11} + \frac{1}{55} = \frac{6}{55}$ (0.109)	112222	FT previous values
3(a)	$P(C \text{ wins } 1^{st} \text{ shot}) = P(R \text{ misses})P(C \text{ hits})$	M1	
J(a)	$= 0.7 \times 0.4$	A1	
	$= 0.7 \times 0.4$ = 0.28		
(b)	$P(C \text{ wins } 2^{\text{nd}} \text{ shot}) = 0.7 \times 0.6 \times 0.7 \times 0.4$	M1	
	$=0.42 \times 0.28 (k=0.42)$	A1	
(c)	$P(C \text{ wins}) = 0.28 + 0.42 \times 0.28 + \dots$	M1	FT their value of k if between 0
	= 0.28	A 1	and 1
	-1-0.42	A1	
	=0.483 (14/29)	A1	

Ques	Solution	Mark	Notes
4(a)(i)	$P(X=6) = {20 \choose 6} \times 0.2^6 \times 0.8^{14} = 0.109$	M1A1	M0 if no working shown
(ii)	Prob=0.9900 - 0.0692 or 0.9308 - 0.0100 = 0.921 cao	B1B1 B1	B0B0B0 if no working shown
(b)	B(200,0.0123) is approx Po(2.46)	B1	
	$P(Y=3) = \frac{e^{-2.46} \times 2.46^3}{3!} = 0.212$	M1A1	M0 if no working shown Do not accept use of tables
5(a)	$P(2G) = \frac{1}{3} \times 1 + \frac{1}{3} \times \frac{3}{4} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{4} \times \frac{1}{3}$	M1A3	M1 Use of Law of Total Prob (Accept tree diagram)
	$=\frac{5}{9}$ cao	A1	
(b)		D4D4	FT denominator from (a)
	5/9	B1B1	B1 num, B1 denom
	$P(A 2G) = \frac{1/3}{5/9}$ $= \frac{3}{5} \text{ cao}$	B1	
6(a)(i)	<i>X</i> is B(10,0.75) si	B1	
	E(X)=7.5,	B1	
	Var(X) = 1.875	B 1	
(ii)	Attempt to evaluate either $P(X = 7)$ or $P(X = 8)$	M1	
	P(X = 7) = 0.250; $P(X = 8) = 0.282$	A1	
	So try $P(X = 9) = 0.188$ Most likely value = 8	A1 A1	Award the final A1 only if the
	Wost likely value = 8	AI	previous A1 was awarded
(b)(i)	W = 10X - 2(10 - X) = 12X - 20	B1	-
(ii)	$E(W) = 12 \times 7.5 - 20 = 70$	B1 M1A1	FT their mean and variance from
	$Var(W) = 12^2 \times Var(X) = 270$	WIIAI	(a) and FT their derived values of a and b provided that $a \ne 1$
			and $b \neq 0$
7(a)	$E(X) = 0.1 \times 1 + 0.2 \times 2 + 0.3 \times 3 + 0.1 \times 4 + 0.3 \times 5$	M1	
	$= 3.3$ $E(X^2) = 0.1 \times 1 + 0.2 \times 4 + 0.2 \times 9 + 0.1 \times 16$	A1	
	$E(X^{2}) = 0.1 \times 1 + 0.2 \times 4 + 0.3 \times 9 + 0.1 \times 16$	B 1	
	$+0.3 \times 25$ (12.7) $Var(X) = 12.7 - 3.3^2 = 1.81$	M1A1	FT their $E(X^2)$
(b)(i)	Val(A) - 12.7 - 3.3 = 1.01	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(1)	The possibilities are $(1,1,2)$; $(1,2,1)$; $(2,1,1)$	B1	
	$P(S=4) = 0.1^2 \times 0.2 \times 3 = 0.006$	M1A1	Award M1 if only one correct
(ii)	The only extra possibility is $(1,1,1)$ so	B1	possibility given
(11)	$P(S=3) = 0.1^3$ (0.001)	B1	
	Therefore $P(S \le 4) = 0.007$	B1	FT from (b)(i) if M1 awarded

Ques	Solution	Mark	Notes
8(a)(i) (ii)	Prob = $\frac{e^{-15} \times 15^{12}}{12!}$ or $0.2676 - 0.1848$ = 0.083 or $0.8152 - 0.7324$ We require $P(X \ge 20)$ = $1 - 0.8752 = 0.1248$	M1 A1 M1 A1	M0 if no working shown Award M1A0 for use of adjacent row or column
(b)	(Using tables, the number required is) 25	M1A1	Award M1A0 for 24 or 26
9(a)(i)	Using $F(2) = 1$	M1	
	1 = k(8-2) $k = 1/6 (convincing)$	A1	
(ii)	$P(1.25 \le X \le 1.75) = F(1.75) - F(1.25)$ = 0.6015 0.1171 si = 0.484 (31/64)	M1 A1 A1	
(b)(i)	$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^3 - x}{6} \right)$	M1	
	$=\frac{3x^2-1}{6}$	A1	
(ii)	$E(X) = \int_{1}^{2} x \left(\frac{3x^2 - 1}{6} \right) dx$	M1A1	M1 for the integral of <i>xf</i> (<i>x</i>), A1 for completely correct with or without limits FT on their <i>f</i> if previous M1
	$= \left[\frac{x^4}{8} - \frac{x^2}{12}\right]_1^2$	A1	awarded Limits must appear here if not before M0 if no working shown
	= 1.625 cao	A1	140 II IIO WOIKIII SHOWII

Mathematics FP1 January 2014

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1	$f(x+h) - f(x) = \frac{x+h}{1+x+h} - \frac{x}{1+x}$	M1A1	
	$= \frac{(x+h)(1+x) - x(1+x+h)}{(1+x+h)(1+x)}$	A1 A1	
	$=\frac{h}{(1+x+h)(1+x)}$	AI	
	$f'(x) = \lim_{h \to 0} \frac{h}{h(1+x+h)(1+x)}$	M1	
	$=\frac{1}{(1+x)^2}$ cso	A1	
2	$S_n = \sum_{r=1}^n r(r+1)^2 = \sum_{r=1}^n r^3 + 2\sum_{r=1}^n r^2 + \sum_{r=1}^n r$	M1A1	
	$= \frac{n^2(n+1)^2}{4} + \frac{2n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$	A1A1	Award A1 for 2 correct
	$= \frac{n(n+1)}{12} \left(3n^2 + 3n + 8n + 4 + 6 \right)$	A1	
	$=\frac{n(n+1)(n+2)(3n+5)}{12}$	A1	
3(a)	$(1+2i)^4 = 1+4.2i+6(2i)^2+4(2i)^3+(2i)^4$ = 1+8i-24-32i+16=-7-24i	M1 A1	Award M1 for use of binomial theorem (oe)
(b)(i)	Let $f(x) = x^4 + 12x - 5$ f(1+2i) = -7 - 24i + 12 + 24i - 5 = 0 (showing that $1 + 2i$ is a root)	M1A1	
(ii)	Another root is 1 – 2i EITHER	B1	
	It follows that $x^2 - 2x + 5$ is a factor of $f(x)$	B1	
	$x^{4} + 12x - 5 = (x^{2} - 2x + 5)(x^{2} + 2x - 1)$ The other two roots are $-1 \pm \sqrt{2}$	M1A1	
		M1A1	
	OR (1+2i)(1-2i) = 5 (1+2i) + (1-2i) = 2	B1	
	Therefore if α , β denote the other two roots $\alpha + \beta = -2$ and $\alpha\beta = -1$ So α , β are the roots of the equation $x^2 + 2x - 1 = 0$	B1 B1	
	The other two roots are $-1 \pm \sqrt{2}$	M1A1	

Ques	Solution	Mark	Notes
4	$\alpha + \beta = \frac{3}{2}, \alpha\beta = 2$	B 1	
	$\alpha^{2}\beta + \alpha\beta^{2} + \alpha\beta = \alpha\beta(\alpha + \beta + 1) = 5$	M1A1	FT one slip in line above in sign or in their two values.
	$\alpha^{3}\beta^{3} + \alpha^{2}\beta^{3} + \alpha^{3}\beta^{2} = \alpha^{2}\beta^{2}(\alpha\beta + \alpha + \beta) = 14$	M1A1	
	$\alpha \beta^2 \times \alpha^2 \beta \times \alpha \beta = \alpha^4 \beta^4 = 16$	M1A1	
	The required equation is $x^3 - 5x^2 + 14x - 16 = 0$ cao		
	x - 3x + 14x - 10 = 0 Cao	B1	FT their three values
5(a)	Ref matrix = $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Rotation matrix = $ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	B1	
	$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$		
(b)	The general point on the line is $(\alpha, 2\alpha - 1)$. Consider	M1	
	$\begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ 2\alpha - 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\alpha + 2 \\ 2\alpha - 2 \\ 1 \end{bmatrix}$	m1	
	$x = -\alpha + 2$, $y = 2\alpha - 2$ Eliminating α , the equation of the image is $y = 2 - 2x$	A1 M1A1	

6(a) Putting $n = 1$, the formula gives	
$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$	
which is correct so the result is true for $n = 1$ B1	
Assume formula is true for $n = k$, ie	
$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^k = \begin{bmatrix} 1 & 3^k - 1 \\ 0 & 3^k \end{bmatrix}$ M1	
$\begin{vmatrix} 0 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 3^k \end{vmatrix}$ M1	
Consider, for $n = k + 1$,	
$\begin{bmatrix} 1 & 2 \end{bmatrix}^{k+1} - \begin{bmatrix} 1 & 2 \end{bmatrix}^{k} \begin{bmatrix} 1 & 2 \end{bmatrix}_{\text{or}} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}^{k} $ M1	
$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^k \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^k $ M1	
$\begin{bmatrix} 1 & 2+3(3^k-1) \end{bmatrix}$ $\begin{bmatrix} 1 & 3^k-1+2\cdot3^k \end{bmatrix}$	
	seen
$= \begin{bmatrix} 1 & 3^{k+1} - 1 \\ 0 & 3^{k+1} \end{bmatrix}$ Auard this A1 only awarded	y if previous A1
[awarded	
Therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction. A1 Award final A1 on	ly if all six
previous marks have	· ·
$\begin{bmatrix} 1 & -2/3 \end{bmatrix}$	
(b) The formula gives $\mathbf{A}^{-1} = \begin{bmatrix} 1 & -2/3 \\ 0 & 1/3 \end{bmatrix}$ B1	
EITHER Consider $\begin{bmatrix} 1 & -2/3 \\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
$\begin{bmatrix} 1 & 1 & 3 $	
OR $\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2/3 \\ 0 & 1/3 \end{bmatrix}$	
The formula is therefore correct for $n = -1$	

Ques	Solution	Mark	Notes
7(a)(i)	Cofactor matrix = $\begin{bmatrix} -1 & 2 & -1 \\ -9 & 6 & 0 \\ 7 & -5 & 1 \end{bmatrix}$ si	M1 A1	Award the M1 if at least 5 of the elements are correct
	Adjugate matrix = $\begin{bmatrix} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{bmatrix}$	A1	
(ii)	Determinant = 3	B1	
	Inverse matrix = $\frac{1}{3}\begin{bmatrix} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{bmatrix}$	B1	FT their adjugate matrix
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 13 \\ 13 \\ 19 \end{bmatrix}$		
(b)	$=\begin{bmatrix}1\\3\\2\end{bmatrix}$	M1	FT their inverse matrix
		A1	
8(a)	Taking logs, $\ln f(x) = \sqrt{x} \ln \left(\frac{1}{x}\right)$	B1	
	Differentiating, $\frac{f'(x)}{f(x)} = \frac{1}{2\sqrt{x}} \ln\left(\frac{1}{x}\right) + \sqrt{x} \cdot -\frac{1}{x}$ $f'(x) = f(x) \left(\frac{-2 - \ln x}{2\sqrt{x}}\right)$	B1B1 B1	B1 for each side Award this B1 only if $ln(1/x)$ has been simplified to $-lnx$ and the two
(b)	Putting $f'(x) = 0$, $\ln(x) = -2$ so $x = e^{-2} = 0.135$ $y = e^{2/e} = 2.09$	M1 A1 A1	terms are over a common denom.
(c)	$f'(x) > 0$ for $0 < x < e^{-2}$; $f'(x) < 0$ for $x > e^{-2}$ cao It is a maximum	B1 B1	Accept $x < e^{-2}$ Award this B1 if the answer is consistent with a previous line containing two sets of values of x
			even if incorrect.

Ques	Solution	Mark	Notes
9(a)	Putting $z = 0$,	M1	Accept alternative arguments that do
	we see that LHS = RHS = 2 hence locus passes through $(0,0)$	A1	not depend upon the result obtained in (b)
(b)	Putting $z = x + iy$,	M1	
, ,	x-2+iy = 2 x+i(y+1)	A1	
	$(x-2)^2 + y^2 = 4(x^2 + (y+1)^2)$	A1	
	$x^2 - 4x + 4 + y^2 = 4x^2 + 4y^2 + 8y + 4$		
	$3x^2 + 3y^2 + 4x + 8y = 0$	A1	
	(This shows that the locus of P is a circle.)		
	Consider the equation in the form		
	$x^2 + y^2 + \frac{4}{3}x + \frac{8}{3}y = 0$	B1	
	The centre is $\left(-\frac{2}{3}, -\frac{4}{3}\right)$ cao	B1	
	The radius is $\frac{2\sqrt{5}}{3}$ (1.49) cao	B1	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk